Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Mol Graph Model ; 129: 108731, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38430696

RESUMO

The energy stability and electronic structural of graphene and defective graphene oxide (GO) parallel to the surface of LiFePO4 (010) were theoretically investigated by using first-principles density functional theory calculations within the DFT + U framework. The calculated formation energy shows that GO coating on the surface of LiFePO4 (010) is energetically favorable and has higher bond strength compared to graphene. The calculation of the electronic structure indicates that the emergence of band in-gap states originates from graphene coating, with adsorbed O atoms contributing significantly above the Fermi level. Electron density difference indicate that GO stands on the LFP (010) surface through C-O and Fe-O bonds, rather than relying on van der Waals forces placed parallel to the LFP crystal, with the chemical bond at the LFP/GO interface (Fe-O-C) both anchoring the coated carbon layer and promoting electron conductivity at the interface. In addition, LFP/GO shows superior electrochemical performance, Atomic Populations suggests that the average Fe-O bonding on the surface of LiFePO4 (010) was clearly changed after graphene or GO coating, which led to the expansion of Li+ channels and favored the migration insertion and extraction of Li+.


Assuntos
Grafite , Carbono , Condutividade Elétrica , Eletrônica
2.
J Mol Graph Model ; 125: 108604, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37598604

RESUMO

In this study, the thermodynamic stability, embedding voltage, volume change rate, electronic structure properties, mechanical properties and lithium-ion diffusion characteristics of the Mn, N co-doped LiFePO4 material are investigated using a first-principles approach based on density generalization theory. The results show that the doped system has a low formation energy and the material meets the thermodynamic stability criteria. During the de-lithium process, the volume change rate of the doped material decreases and the cycling performance is improved, but the battery energy density decreases slightly. It is also found that the doping of N led to the transformation of the material from a p-type semiconductor to an N-type semiconductor, while the doping of Mn and N lead to the creation of impurity bands, narrowing of the band gap and an increase in conductivity. At the same time, Mn, N co-doping greatly improve the ductility of the material, suppress the generation of microcracks, and reduce the possibility of shear deformation. In addition, it is noteworthy that the lithium-ion diffusion energy barrier of the doped system is reduced, which predicts an increase in the diffusion rate of lithium ions in the doped system.


Assuntos
Fontes de Energia Elétrica , Lítio , Difusão , Condutividade Elétrica , Eletrônica
3.
Life Sci ; 326: 121790, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211345

RESUMO

AIMS: PARP inhibitors (PARPi) are known to exert anti-tumor effects in patients with BRCA-mutated (BRCAmut) or homologous recombination (HR)-deficient cancer, but recent clinical investigations have suggested that this treatment may also be beneficial in patients with HR-proficient tumors. In this study, we aimed to investigate how PARPi exerts anti-tumor effects in non-BRCAmut tumors. MAIN METHODS: BRCA wild-type, HR-deficient-negative ID8 and E0771 murine tumor cells were treated in vitro and in vivo with olaparib, a clinically approved PARPi. The effects on tumor growth in vivo were determined in immune-proficient and -deficient mice and alterations of immune cell infiltrations were analyzed with flow cytometry. Tumor-associated macrophages (TAMs) were further investigated with RNA-seq and flow cytometry. In addition, we confirmed olaparib's effect on human TAMs. KEY FINDINGS: Olaparib did not affect HR-proficient tumor cell proliferation and survival in vitro. However, olaparib significantly decreased tumor growth in C57BL/6 and SCID-beige mice (defective in lymphoid development and NK cell activity). Olaparib increased macrophage numbers in the tumor microenvironment, and their depletion diminished the anti-tumor effects of olaparib in vivo. Further analysis revealed that olaparib improved TAM-associated phagocytosis of cancer cells. Notably, this enhancement was not solely reliant on the "Don't Eat Me" CD47/SIRPα signal. In addition, compared to monotherapy, the concomitant administration of αCD47 antibodies with olaparib improved tumor control. SIGNIFICANCE: Our work provides evidence for broadening the application of PARPi in HR-proficient cancer patients and paves the way for developing novel combined immunotherapy to upgrade the anti-tumor effects of macrophages.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Camundongos , Animais , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Macrófagos Associados a Tumor , Antígeno CD47/genética , Camundongos Endogâmicos C57BL , Camundongos SCID , Recombinação Homóloga , Fagocitose , Linhagem Celular Tumoral , Ftalazinas/farmacologia , Microambiente Tumoral
4.
Int J Biol Macromol ; 240: 124324, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023874

RESUMO

CCL21, a secondary lymphoid tissue chemokine, plays an important role in generating an effective anti-tumor immune response. In this study, a genetically modified CCL21 was developed by inserting a pH low insertion peptide to establish a CCL21-rich microenvironment for tumors. The fusion tag thioredoxin (Trx) was designed and fused at the N-terminal of the recombinant protein to protect it from being irrevocably misfolded in microbial host cells. The prokaryotic expression vector pET32a-CCL21-pHLIP was constructed and successfully expressed in E. coli BL21 (DE3) with a soluble expression form and a molecular weight of ~35 kDa. The induction conditions were optimized to obtain an extremely high yield of 6.7 mg target protein from 31.1 mg total protein. The 6xHis tagged Trx-CCL21-pHLIP was purified using Ni-NTA resin, and it was confirmed using SDS-PAGE and Western blot analyses. Consequently, the Trx-CCL21-pHLIP protein was successfully displayed on the cancer cell surface in a weak acidic microenvironment and showed the same ability as CCL21 in recruiting CCR7-positive cells. Additionally, the CCL21 fusion protein with or without Trx tag showed similar functions. Therefore, the study implies the feasibility of directing a modular genetic method for the development of protein-based drugs.


Assuntos
Escherichia coli , Neoplasias , Proteínas Recombinantes de Fusão/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Proteínas Recombinantes/metabolismo , Membrana Celular , Concentração de Íons de Hidrogênio
5.
RSC Adv ; 13(17): 11269-11277, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37057265

RESUMO

Exosomes exhibit great potential as novel therapeutics for tissue regeneration, including cell migration and angiogenesis. However, the limited intracellular delivery efficiency of exosomes might reduce their biological effects. Here, exosomes secreted by adipose-derived mesenchymal stem cells were recombined with fluorinated peptide dendrimers (FPG3) to form the fluorine-engineered exosomes (exo@FPG3), which was intended to promote the cytosolic release and the biological function of exosomes. The mass ratio of FPG3 to exosomes at 5 was used to investigate its cellular uptake efficiency and bioactivity in HUVECs, as the charge of exo@FPG3 tended to be stable even more FPG3 was applied. It was found that exo@FPG3 could enter HUVECs through a variety of pathways, in which the clathrin-mediated endocytosis played an important role. Compared with exosomes modified with peptide dendrimers (exo@PG3) and exosomes alone, the cellular uptake efficiency of exo@FPG3 was significantly increased. Moreover, exo@FPG3 significantly enhanced the angiogenesis and migration of HUVECs in vitro as compared to exo@PG3 and exosomes. It is concluded that surface fluorine modification of exosomes with FPG3 is conducive to the cellular uptake and bioactivity of the exosome, which provides a novel strategy for engineered exosomes to enhance the biological effects of exosome-based drug delivery.

6.
Nanomedicine ; 50: 102669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933756

RESUMO

Epidermal Growth Factor Receptor (EGFR) is a promising therapeutic target for triple-negative breast cancer (TNBC). Recently, specific EGFR-targeting peptide GE11-based delivery nano-system shows excellent potential because of its chemical versatility and good targeting ability. However, no further research focusing on the downstream of EGFR after binding with GE11 was explored. Hence, we tailor-designed a self-assembled nanoplatform named GENP using amphiphilic molecule of stearic acid-modified GE11. After loading doxorubicin (DOX), the resulted nanoplatform GENP@DOX demonstrated high loading efficiency and sustainable drug release. Importantly, our findings proved that GENP alone significantly suppressed the proliferation of MDA-MB-231 cells via EGFR-downstream PI3K/AKT signaling pathways, contributing to the synergistic treatment with its DOX release. Further work illustrated remarkable therapeutic efficacy both in orthotopic TNBC and its bone metastasis models with minimal biotoxicity. Together, the results highlight that our GENP-functionalized nanoplatform is a promising strategy for the synergistic therapeutic efficacy targeting EGFR-overexpressed cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Receptores ErbB/química , Doxorrubicina/química , Peptídeos/farmacologia , Peptídeos/química
7.
J Mol Graph Model ; 121: 108456, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966662

RESUMO

To understand the effects of pressure on microstructural evolution, a molecular dynamics simulation study has been performed under pressures of 0-20 GPa for liquid Fe-S-Bi alloy during the solidification process. The variations in the radial distribution function, average atomic energy, and H-A bond index of the cooling system are analyzed. The rapid solidification process of liquid Fe-S-Bi alloy into crystalline and amorphous alloys is investigated from different perspective. The results show that the glass transition temperature Tg, the sizes of the MnS atomic groups, and major bond-types increase almost linearly with increasing pressure. In addition, the recovery rate of Bi increased first and then decreased with increasing pressure, reaching a peak of 68.97% under 5 GPa. The manganese sulfide compound is embedded in the alloy with a spindle-shape under 20 GPa, which is a better clusters structure.


Assuntos
Ligas , Simulação de Dinâmica Molecular , Vidro , Manganês , Temperatura
8.
J Control Release ; 357: 133-148, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972863

RESUMO

Spleen is an ideal site for initiating and amplifying antigen-specific immune response. However, spleen-selective antigen delivery has limited tumor therapeutic efficacy owing to an inadequate cytotoxic T-cell immune response. In this study, we designed a spleen-selective mRNA vaccine that delivered unmodified mRNA and Toll-like Receptor (TLR) agonists to the spleen after systemic administration, resulting in a sufficient and persistent antitumor cellular immune response with potent tumor immunotherapeutic efficacy. To establish potent tumor vaccines (sLNPs-OVA/MPLA), we co-loaded stearic acid doped lipid nanoparticles with ovalbumin (OVA)-coding mRNA and TLR4 agonists (MPLA). We found that sLNPs-OVA/MPLA facilitated tissue-specific mRNA expression in the spleen after intravenous injection and elicited enhanced adjuvant activity with Th1 immune responses by activating multiple TLRs. In a prophylactic mouse model, sLNPs-OVA/MPLA induced a potent antigen-specific cytotoxic T cell immune response and ultimately prevented the growth of EG.7-OVA tumors with persistent immune memory protection. In addition, sLNPs-OVA/MPLA effectively delayed the tumor growth of EG.7-OVA subcutaneously transplanted lymphoma and lung metastasis formation of B16F10-OVA intravenously injected melanoma. This study showed that the co-delivery of mRNA antigens and appropriate TLR agonists could significantly improve the antitumor immunotherapeutic efficacy of spleen-targeted mRNA vaccines via synergistic immunostimulation and Th1 immune responses.


Assuntos
Baço , Receptor 4 Toll-Like , Animais , Camundongos , Receptor 4 Toll-Like/genética , Imunização , Adjuvantes Imunológicos , Imunidade Celular , Antígenos , Ovalbumina , Camundongos Endogâmicos C57BL
9.
Angiogenesis ; 26(1): 19-36, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35829860

RESUMO

Tumor-induced lymphangiogenesis promotes the formation of new lymphatic vessels, contributing to lymph nodes (LNs) metastasis of tumor cells in both mice and humans. Vessel sprouting appears to be a critical step in this process. However, how lymphatic vessels sprout during tumor lymphangiogenesis is not well-established. Here, we report that S100A4 expressed in lymphatic endothelial cells (LECs) promotes lymphatic vessel sprouting in a growing tumor by regulating glycolysis. In mice, the loss of S100A4 in a whole body (S100A4-/-), or specifically in LECs (S100A4ΔLYVE1) leads to impaired tumor lymphangiogenesis and disrupted metastasis of tumor cells to sentinel LNs. Using a 3D spheroid sprouting assay, we found that S100A4 in LECs was required for the lymphatic vessel sprouting. Further investigations revealed that S100A4 was essential for the position and motility of tip cells, where it activated AMPK-dependent glycolysis during lymphatic sprouting. In addition, the expression of S100A4 in LECs was upregulated under hypoxic conditions. These results suggest that S100A4 is a novel regulator of tumor-induced lymphangiogenesis. Targeting S100A4 in LECs may be a potential therapeutic strategy for lymphatic tumor metastasis.


Assuntos
Células Endoteliais , Vasos Linfáticos , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Metástase Linfática/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
10.
J Mol Graph Model ; 118: 108354, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36209593

RESUMO

In order to research the effect pattern of MnS inclusions on free-cutting steel, we study the microstructure evolution, the damage mechanism and the mechanical properties in free-cutting steel in the presence of MnS inclusions. Spindle shaped MnS is added as inclusions within the free-cutting steel. The mechanical properties were found to change when inclusions were present. The gained results show that the formation of voids causing fracture starts from the interface inside the matrix close to the MnS. From the point of view of nanocomposite strength, the main effect of MnS inclusions is related to stress concentration, leading to the effect of increased stresses near the interface between the interior of the matrix and the inclusions. The inclusions have lower Young's modulus and lower dislocation activity, resulting in smaller deformation of the alloy system, larger interfacial stress concentrations and earlier hole formation. The maximum strain and stress regions of the alloy also appear near the MnS inclusions, which leads to the formation of defects near the MnS inclusions and then fracture of the alloy. MnS inclusions adversely affect the tensile properties of the alloy, such as Young's modulus, yield stress and yield strain. By comparing the stress-strain curves of single crystal iron and alloy containing MnS inclusions, it is indicated that the yield strength of the latter decreases. Slip bands and dislocation lines are first generated around the MnS inclusion, and the phase transition is induced from the original single BCC structure to FCC, HCP and amorphous structures, and the atoms of FCC, HCP and amorphous structures increase with increasing strain, while those of BCC structure decrease, especially after yield strain. This study is significant for understanding the effect of inclusions on the mechanical laws and fracture mechanisms of the alloy.

11.
Materials (Basel) ; 15(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888200

RESUMO

In this paper, a model generation algorithm for non-equal diameter particles with a specified probability density distribution is proposed. Based on considering the randomness of the size and distribution of the particles, the compact stacking of the particles is realized by the compactness algorithm, and then the spatial distribution of the tightly compacted particles is made to meet the random distribution of the specified probability density and the specified volume fraction by the filtering algorithm. The computational efficiency and effectiveness of the algorithm are verified, and the effects of the particle size and volume fraction on the distribution are analyzed. Finally, the proposed model has been used to study the permeability of a titanium porous filter cartridge. The results show that the size and location of the particle samples that are generated by the proposed algorithm follow specified probability distributions according to the requirements, and the volume fraction can be adjusted. Compared with the traditional algorithm, the computational effort and complexity are reduced. The resultant model can be used to study the permeability of porous materials and provide modeling support for structural optimization and further simulation of porous materials.

12.
Front Pharmacol ; 13: 924387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800449

RESUMO

Osteoarthritis (OA) is the most common type of arthritis and the leading cause of disability globally. It tends to occur in middle age or due to an injury or obesity. OA occurs with the onset of symptoms, including joint swelling, joint effusion, and limited movement at a late stage of the disease, which leads to teratogenesis and loss of joint function. During the pathogenesis of this degenerative joint lesion, several local inflammatory responses are activated, resulting in synovial proliferation and pannus formation that facilitates the destruction of the bone and the articular cartilage. The commonly used drugs for the clinical diagnosis and treatment of OA have limitations such as low bioavailability, short half-life, poor targeting, and high systemic toxicity. With the application of nanomaterials and intelligent nanomedicines, novel nanotherapeutic strategies have shown more specific targeting, prolonged half-life, refined bioavailability, and reduced systemic toxicity, compared to the existing medications. In this review, we summarized the recent advancements in new nanotherapeutic strategies for OA and provided suggestions for improving the treatment of OA.

13.
J Cell Mol Med ; 26(10): 2921-2934, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366056

RESUMO

N-α-Acetyltransferase 10 (NAA10) was reported to be involved in tumour invasion and metastasis in several of tumours. However, the role and mechanism of NAA10-mediated invasion and metastasis in oral squamous cell carcinoma (OSCC) remains undetermined. Herein, our study showed that NAA10 inhibits cell migration and invasion in vitro and attenuates the xenograft tumorigenesis in nude mice. Mechanistically, we demonstrated that there is a physical interaction between NAA10 and RelA/p65 in OSCC cells, thereby preventing RelA/p65-mediated transcriptional activation of Pirh2. Consequently, inhibition of Pirh2 increased p53 level and suppressed the expression of p53 downstream targets, matrix metalloprotein-2 (MMP-2) and MMP-9. Therefore, NAA10 may function as a tumour metastasis suppressor in the progression of OSCC by targeting Pirh2-p53 axis and might be a prognostic marker as well as a therapeutic target for OSCC.


Assuntos
Neoplasias Bucais , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Neoplasias Bucais/patologia , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases
14.
Int J Biol Sci ; 18(4): 1476-1490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280672

RESUMO

Chemotherapeutic drugs have been successfully used to treat several cancers, including melanoma. However, metastasis occasionally occurs after chemotherapy. Here, we reported that paclitaxel (PTX) treatment for B16F10 tumour in mice led to an enhanced lymphatic metastasis of the melanoma cells, although a significant inhibition of tumour growth at the injection site was observed. Further study demonstrated that PTX upregulated the expression of C-C chemokine receptor type 7 (CCR7) in B16F10 cells, enhancing their migration through the activation of JNK and p38 signalling pathways. Loss of CCR7 or blockade of C-C motif chemokine ligand 21 (CCL21)/CCR7 axis abolished the pro-migration effect of PTX on B16F10 melanoma cells. Importantly, combination of PTX and CCR7 mAb could simultaneously delay the tumour growth and reduce the lymphatic metastasis in B16F10 melanoma. The blockade of CCL21/CCR7 axis may collectively serve as a strategy for lymphatic metastasis in some melanoma after chemotherapy.


Assuntos
Quimiocina CCL21 , Melanoma , Animais , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL21/metabolismo , Quimiocina CCL21/farmacologia , Ligantes , Metástase Linfática , Melanoma/tratamento farmacológico , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Receptores CCR7/metabolismo
15.
Acta Pharm Sin B ; 12(2): 939-951, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256956

RESUMO

The lung is one of the most common sites for cancer metastasis. Collagens in the lung provide a permissive microenvironment that supports the colonization and outgrowth of disseminated tumor cells. Therefore, down-regulating the production of collagens may contribute to the inhibition of lung metastasis. It has been suggested that miR-29 exhibits effective anti-fibrotic activity by negatively regulating the expression of collagens. Indeed, our clinical lung tumor data shows that miR-29a-3p expression negatively correlates with collagen I expression in lung tumors and positively correlates with patients' outcomes. However, suitable carriers need to be selected to deliver this therapeutic miRNA to the lungs. In this study, we found that the chemotherapy drug cisplatin facilitated miR-29a-3p accumulation in the exosomes of lung tumor cells, and this type of exosomes exhibited a specific lung-targeting effect and promising collagen down-regulation. To scale up the preparation and simplify the delivery system, we designed a lung-targeting liposomal nanovesicle (by adjusting the molar ratio of DOTAP/cholesterol-miRNAs to 4:1) to carry miR-29a-3p and mimic the exosomes. This liposomal nanovesicle delivery system significantly down-regulated collagen I secretion by lung fibroblasts in vivo, thus alleviating the establishment of a pro-metastatic environment for circulating lung tumor cells.

16.
Curr Med Sci ; 41(3): 498-504, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34129200

RESUMO

The abnormal growth of epithelium-like cells has been noticed in spontaneously hypertensive rats (SHRs) with hypertensive nephropathy. However, the characteristics of abnormal epithelium-like cells and their pathogenesis in hypertensive nephropathy are not fully understood. In the present study, we investigated the correlation of epithelium-like cells with glomerular injury, and the effects of early drug intervention with telmisartan, an anti-hypertensive drug, on the growth of epithelium-like cells. The results showed that the epithelium-like cells were obviously observed lining along the luminal surface of Bowman's capsule in glomeruli, significantly resulting in the atrophy of the glomerular tuft. Some of the epithelium-like cells strongly expressed proliferating cell nuclear antigen (PCNA) and vimentin, indicating active cellular proliferation. The incidence of epithelium-like cells varied from 13.6% to 54.4% of glomeruli in 48-week-old SHRs, and from 5.1% to 18.0% of glomeruli in age-matched Wistar-Kyoto (WKY) rats (P<0.01). The linear regression analysis further confirmed an obvious correlation between the incidence of epithelium-like cells and the glomerular injury. Moreover, early intervention with telmisartan could dramatically attenuate the progression of epithelium-like cells growth. However, no significant effect of telmisartan on the established epithelium-like cells was observed. Taken together, we demonstrated the involvement of abnormal epithelium-like cells growth in glomerular injury during hypertensive nephropathy in SHRs, and firstly showed the positive effects of the anti-hypertensive drug on the progression of epithelium-like cells growth.


Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão Renal/tratamento farmacológico , Hipertensão/tratamento farmacológico , Nefrite/tratamento farmacológico , Telmisartan/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Epitélio/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/patologia , Hipertensão Renal/genética , Hipertensão Renal/patologia , Rim/efeitos dos fármacos , Rim/patologia , Nefrite/genética , Nefrite/patologia , Ratos , Ratos Endogâmicos SHR
17.
Med Oncol ; 37(10): 91, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960365

RESUMO

Cinnamaldehyde (CA) is an essential component of cinnamon that has been shown to exhibit anti-tumor effects through growth inhibition and induction of apoptosis in cancer cells. We have previously shown that CA could interfere with myeloid-derived suppressor cells (MDSCs), leading to cancer growth inhibition. In addition, recent studies have demonstrated that cancer-associated fibroblasts (CAFs) promote cancer development in different ways. However, the effect of CA in CAFs has not been studied. In this study, we investigated the effect and mechanism of action of CA in prostate CAFs. We found that CA induced cell cycle arrest and apoptosis in prostate CAFs via the intrinsic pathway. This was due to the decrease in mitochondrial membrane potential (∆Mψ), increased level of intracellular reactive oxygen species (ROS), and calcium ion (Ca2+). In addition, protein expression analysis showed an increase in the expression levels of cytochrome c, bax, cleaved caspase 3 and cleaved PARP, and a decrease in the expression levels of Bcl-2, caspase 9, PARP, and DEF-45. Interestingly, reduced glutathione (GSH) rescued CAFs from CA-induced cell apoptosis, demonstrating that generation of ROS is critical for this effect. From this study, we see that CA has the ability to inhibit growth of CAFs and is therefore a potential cancer therapeutic target.


Assuntos
Acroleína/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias da Próstata/patologia , Acroleína/farmacologia , Apoptose/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Células Cultivadas , Glutationa/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo
18.
Sci Rep ; 10(1): 5242, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251321

RESUMO

Cold temperatures often severely restrict the growth, distribution and productivity of plants. The freezing tolerance of plants from temperate climates can be improved by undergoing periods of cold acclimation (CA). Tobacco is an important economic plant and is sensitive to cold stress. However, the dynamic changes and regulatory mechanisms of gene expression and metabolic processes during CA remain largely unknown. In this study, we performed RNA sequencing and metabolomic profiling analyses to identify the genes and metabolites specifically expressed during CA. Our transcriptomic data revealed 6905 differentially expressed genes (DEGs) during CA. Functional annotation and enrichment analyses revealed that the DEGs were involved mainly in signal transduction, carbohydrate metabolism and phenylpropanoid biosynthesis. Moreover, a total of 35 significantly changed metabolites were identified during CA via an LC-MS platform. Many protective metabolites, such as amino acids, carbohydrates, tricarboxylic acid (TCA) cycle intermediates and phenylpropanoid-related substances, were identified during CA. The gene-metabolite network extensively outlined the biological processes associated with the utilization of sugars, activation of amino acid metabolism, TCA cycle and phenylpropanoid biosynthesis in tobacco under CA. The results of our present study provide a comprehensive view of signal transduction and regulation, gene expression and dynamic changes in metabolites during CA.


Assuntos
Aclimatação/fisiologia , Resposta ao Choque Frio/fisiologia , Proteínas de Plantas/genética , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Proteínas de Plantas/metabolismo , /metabolismo
19.
Int J Pharm ; 576: 118999, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31893541

RESUMO

Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide. Moreover, metastasis is one of the main causes of death in CRC patients. Nanotechnology-based gene therapy has shown significant therapeutic benefits in recent clinical trials for cancer treatment. Recent studies have shown that pigment epithelium-derived factor (PEDF) protein can inhibit tumor growth and metastasis by anti-angiogenesis and pro-apoptosis. In this study, we prepared a PEDF-DNA-loaded liposome for cancer-targeted gene therapy for metastatic CRC using an iRGD peptide. Our results showed that cancer-targeted PEDF-DNA liposomes (R-LP/PEDF) exhibited enhanced inhibitory effects on invasion, migration, and pro-apoptosis of CRC cells in vitro. In addition, it reduced metastasis tumor nodules in lung and prolonged the survival time in a mouse model of metastatic CRC.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Neoplasias Colorretais/terapia , Proteínas do Olho/genética , Marcação de Genes , Neoplasias Pulmonares/prevenção & controle , Fatores de Crescimento Neural/genética , Oligopeptídeos/metabolismo , Serpinas/genética , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Peptídeos Penetradores de Células/química , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas do Olho/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/metabolismo , Oligopeptídeos/química , Receptores Imunológicos/metabolismo , Receptores de Peptídeos/metabolismo , Serpinas/metabolismo , Carga Tumoral
20.
Sheng Wu Gong Cheng Xue Bao ; 36(12): 2741-2754, 2020 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-33398969

RESUMO

Metastasis is the leading cause of mortality for cancer patients, and lymphatic metastasis is one of the main ways of tumor metastasis. The role of CCL21 and its receptor CCR7 in lymphatic metastasis has been increasingly concerned in recent years. CCR7 is mainly expressed by both dendritic cells and T cells for immune responses. CCL21, the chemokine ligand for CCR7, secreted from lymphatic endothelial cells binds CCR7 and recruits immune cells toward lymphatic vessels and lymphatic nodes. CCR7 expressed tumor cells can also metastasize to lymphatic system by the similar way as immune cells. Targeting CCL21/CCR7 axis to inhibit lymphatic metastasis but remain potent anti-tumor immune response has increasingly become a spot light of tumor immunotherapy. In this review, we summarize the role of CCL21/CCR7 axis in lymphatic metastasis, as well as preclinical trials and clinical trials in targeting CCL21/CCR7 axis for tumor metastasis therapy, hoping to accelerate the progress on tumor metastasis therapy by targeting CCL21/CCR7 axis.


Assuntos
Quimiocina CCL21 , Células Endoteliais , Neoplasias , Linhagem Celular Tumoral , Humanos , Metástase Linfática , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Receptores CCR7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...